A Technique for Removing an Important Class of

*

Trojan Horses from High Order Languages
John McDermott

Center for Secure Information Technology’
Naval Research Laboratory, Code 5540
4555 Overlook Ave.
Washington, DC 20375
mcdermott@nrl-css.arpat

1 Introduction

In his 1984 Turing Award Lecture [4], Ken Thompson described a sophisticated
Trojan horse attack on a compiler, one that is undetectable by any search of
the compiler source code. The object of the compiler Trojan horse is to modify
the semantics of the high order language in a way that breaks the security of a
trusted system generated by the compiler.

The Trojan horse Thompson described is a form of virus, inasmuch as it
is self-reproducing, but it has other characteristics that differentiate it from
viruses that exploit the implementation details of a computer system. First of
all, the self-reproduction is symbiotic, that is, the Trojan horse depends on the
source text of the legitimate compiler for its continued existence. The virus
only reproduces itself in the output stream of the compiler, when the compiler
is compiling itself (thus destroying the original virus). A second difference is
the relative portability of the virus to different systems. The compiler Trojan
horse Thompson described is less dependent on the design details of a particular
machine because it exploits the portability of high order languages. A final
difference is the location of the virus in the executable file. The compiler Trojan
horse is inserted in a place that is hard to search, that is, in mid-file. While this
is possible for any form of virus, it is more difficult for viruses that do not have
the compiler’s functions at their disposal.

*Proc. 11th National Computer Security Conference, pages 114-117, October, 1988, Bal-
timore, USA, with typographical corrections. Produced by the U.S. Government and not
subject to U.S. Copyright.

T Author’s current address: Center for High Assurance Computer Systems

fAuthor’s current email: John.McDermott@NRL. Navy.mil.



In his lecture, Thompson asserted that “no amount of source-level verifica-
tion or scrutiny will protect you from using untrusted code.” When no other
means is used to provide assurance, this is true. However, this paper describes
a technique that will remove such Trojan horses when used in conjunction with
high-order language source code analysis.

This paper does not address what is referred to here as a general virus,
that is, one that infects programs by direct modification of their images on disk
(or other secondary storage). The general virus is a much larger problem; for
example, detection of arbitrary general viruses is undecidable [1].

Section 2 of this paper explains why this class of Trojan horse and virus is
important for trusted systems, Section 3 describes the basic compiler Trojan
horse, and Section 4 describes the defense in detail. Section 5 gives a brief
sketch of some measures and countermeasures. The paper concludes with some
possible applications of this technique to building trusted systems.

2 The Importance of Compiler Trojan Horse
Viruses

Compiler Trojan horses that are based on a symbiotic relationship between the
source code and the binary code of the same compiler are important for several
reasons besides the difficulty of detecting such a Trojan horse. Such a Trojan
horse can compromise the security of many systems without propagating itself
to those systems, it can compromise several classes of systems without redesign,
and it is difficult to locate in an executable file.

The compiler Trojan horse can introduce unauthorized bypasses of security
mechanisms into trusted systems, yet never exist on those systems. If such a
Trojan horse is successfully installed on a development system, it can infect
every system ever developed there. It can do this because the compiler will
generate security flaws in every trusted system it generates code for, whether it
is compiling for its own host or some other system.

Unlike the general virus, the compiler Trojan horse virus does not depend
on low-level machine or operating system dependent details of the implemen-
tation it infects. One of the subtleties of Thompson’s design is the use of the
compiler’s code generator to install the binary version of the viruses. If the
Trojan horse virus is created in the same intermediate language that is passed
to the code generator, it will be appropriately translated, linked, and loaded
for whatever machine the compiler is targeted for. This applies not only to the
self-reproducing or viral component, it also applies to the other malicious code
that may be installed by the Trojan horse.

The compiler Trojan horse virus can easily install itself in the middle of the
disk image of a program, because the compiler inserts it as it generates code.
A general virus can be inserted into the middle of the disk image of a program
too, but the problem is more difficult for the general virus. In the latter case,
the virus must be designed to obtain privileges that permit it to modify the disk



images of programs. It must also be designed to perform link editing correctly,
a non-trivial task when the program disk image is in link editor output format.

An assertion that general viruses cannot insert themselves in mid-program
would be untrue. Nevertheless, it is significantly more difficult to create such
a general virus and each copy of the general virus must contain all of the code
necessary for correct mid-program insertion.

3 The Trojan Horse

The compiler Trojan horse is introduced into the system by a procedure that
resembles a compiler compiling itself. The authorized Trojan-horse-free version
of the compiler is used to compile a Trojan horse version of itself that always
reproduces the Trojan horse in the compiler. For this to occur, there must be
at least one read access to the legitimate compiler source code, and one or more
execute accesses to the compiler (even viruses must be debugged), and at least
one write access to the legitimate compiler binary. None of these accesses must
necessarily occur on the same system.
The compiler Trojan horse is created as follows:

1. a source code version of the compiler is written that includes two Trojan
horse capabilities, a security mechanism bypass and a self-reproducing
feature,

2. the legitimate Trojan-horse-free version of the compiler is used to produce
an object code version of the Trojan horse compiler, and

3. the Trojan horse object code version is installed over the legitimate object
code version of the compiler.

At the end of this process, the source code of the compiler is free of Trojan
horses but the executable file has two Trojan horse features. The first Trojan
horse feature adds unauthorized security mechanism bypasses whenever it com-
piles the appropriate source code. The second Trojan horse feature reinserts the
object code of the Trojan horse into the compiler whenever it it compiles the le-
gitimate compiler source code. The Trojan horse code will remain in the system
undetected by any analysis of the high order language source code of the com-
piler. Additionally, targeted security mechanisms generated by this compiler
will have unauthorized and undetected bypasses installed.

This attack destroys the semantics of high order languages and undermines
trust in assurance measures that depend on them. This threat is a serious prob-
lem because many valuable assurance techniques depend on high order language
semantics. The availability of a technique for ensuring that the semantics of a
high order language are free of such problems is essential for trust in high order
language assurance techniques.



4 The Defensive Technique

The defense against this attack is based on the same concept of a compiler
compiling itself. The defense exploits the symbiotic relationship between the
source text of the legitimate compiler and the self-reproducing feature of the
Trojan horse object code [3].

The Trojan horse reproduces itself whenever it compiles the compiler. To
do this, it must first recognize some key portion(s) of the source text of the
legitimate compiler. If the Trojan horse compiler compiles a compiler that it
cannot identify as such, it will not reproduce in that program’s object code. If
the suspect compiler is fed a disguised version of itself, or a simple temporary
compiler of a different design, it will not reproduce any such Trojan horses.

If the legitimate compiler can be hidden from its Trojan horse symbiont, so
to speak, the Trojan horse will be erased by itself. Since it will not reproduce
and the object code generated by the disguised compiler will be used in all
future compilations, the threat is removed.

Hiding the legitimate compiler is not necessarily simple. First, recognition
of an arbitrary compiler from an analysis (by the Trojan horse) of the function
of the program can be ruled out as beyond the state of the art. However, the
Trojan horse has many clues at its disposal, within the superficial features of
the legitimate source text. If, for example, every identifier was scrambled, the
Trojan horse still might detect a pattern in the keywords of the compiler source.
If these were scrambled too (this is not difficult on many compilers), the Trojan
horse could analyze comments, constant strings, such as “C Compiler, Version
3.77, requests for library units, or error messages (e.g. the C compiler is the
only one with 198 error messages).

With careful analysis and design (by the defenders), a reduced function
compiler could be created, one that even incorporated large amounts of code
that had nothing to do with compilation. This temporary compiler would be
compiled first, and then its Trojan-horse-free object code version used to compile
the undisguised legitimate compiler. An integrated editor, compiler, and link
editor that can scramble and unscramble program text as appropriate would be
a very useful application of this technique.

5 Measures and Countermeasures

There are compiler Trojan horse measures beyond the text string searches men-
tioned above. Three measure that are of practical significance are, in increasing
order of effectiveness for the Trojan horse:

1. attempt to recognize the compiler by its function,
2. make the Trojan horse part of the compiler’s legitimate features,

3. extend the symbiosis.



The following discussion explains each measure and proposes a countermeasure
to meet it.

5.1 Recognizing the Function of the Legitimate Compiler

While the problem of recognizing the function of an arbitrary program is not
decidable, it is possible for the Trojan horse to recognize the function or a key
part of the function of a restricted class of compilers. By making simplifying
assumptions, the Trojan horse can still identify the legitimate compiler. An
example of such an assumption is to assume the compiler will be generated by
compiler construction tools. The output of a lexical analyzer generator or a
compiler compiler contains regular patterns of instructions and data that could
be associated with the tool and its target program.

The countermeasure to this approach is to construct a very simple but ex-
tremely modular compiler by hand. This compiler could employ techniques not
used in compiler construction tools, to complicate the detection problem. If
this compiler is also divided into very small modules in separately compiled
source files, the Trojan horse will never have enough source text to identify the
compiler function.

5.2 Installing the Trojan Horse in a Compiler Feature

One measure mentioned in [3] is to incorporate part of the compiler function
into the Trojan horse. When the Trojan horse is removed by recompilation,
no compiler on the system will work. A good concrete example of this is run-
time support for the language. If the Trojan horse is placed in the object
code of the run-time support mechanism of the language, in such a way that it
performs some of the run-time support, it cannot be removed without breaking
the language.

Any practical plan for disguising a compiler must take a system view of the
entire language. Many languages assume the existence of support mechanisms
that are outside the definition of the language or are not part of the compiler
program. These support mechanisms can be suitable targets for the compiler
Trojan horse, so this defensive technique should be applied to them also.

5.3 Extending the Symbiosis of the Trojan Horse

The final and most effective measure for the Trojan horse is to extend the
symbiosis. As originally defined, the Trojan horse is a symbiotic system where
the legitimate compiler source text is necessary for the continued existence of
the object code virus. If a general virus is added as an additional symbiotic
feature, the total Trojan horse system becomes a general virus with limited
compiler Trojan horse capabilities, since the security mechanism bypass feature
is still portable.

In the original case, if the object code of the compiler was modified with-
out including the symbiotic self-reproducing feature, the compiler Trojan horse



would be destroyed when the compiler was recompiled. However, in the original
case, the compiler Trojan horse with the self-reproducing feature is protected by
its relationship to the compiler’s legitimate source; whenever the Trojan horse
detects the compiler in its own input, it reproduces.

In the case of the third measure, extending the symbiosis, the compiler
Trojan horse system is expanded to include a general virus that resides at the
start of some other program. That general virus component can then protect
the original compiler Trojan horse. To do this, the general virus modifies the
source of the compiler to include the compiler Trojan horse, recompiles it, and
deletes the modified source file. All of this can be done in background mode,
in such a way that the original compiler source is not modified, only a copy of
it. The Trojan horse in the compiler can check selected executable files to see
if its symbiont general virus is there, and if not, restore it. Thus both virus
and compiler Trojan horse would exist in mutually reinforcing positions on an
infected system.

The third measure results in a general virus, that is, the resulting Trojan
horse is no longer strictly in the class addressed by this technique. The of-
fending program gives up portability and relative simplicity for an increased
likelihood of survival on a single hardware base. It increases its chances of sur-
vival by establishing a symbiont that will not be overwritten when the compiler
is recompiled.

Nevertheless, the defensive technique of disguising the legitimate complier
will present the symbiotic general virus with the same problem. The general
virus must also identify the source text by the same means as its partner within
the compiler object code. If the compiler has been successfully disguised, it
will be equally protected from both the original Trojan horse and any symbiotic
extensions that must identify the compiler. However, the disguise techniques
must now be in effect at all times, and furthermore, all source files must be
disguised in addition to the compiler.

6 Conclusions

In general, this technique increases the complexity of the problem facing a com-
piler Trojan horse. A more complex compiler Trojan horse is more likely is more
likely to have errors, it will take longer to design, develop, and test, and it will
probably be easier to detect because it is larger. Use of this technique makes
the outcome of such an attack depend more on personal skill and less on system
features.

The technique can be applied with varying amounts of resources and achieve
reasonably proportionate assurance results. A low resource approach would
merely scramble identifiers and constants before recompiling the compiler, while
a high resource approach would be a programming system that completely hid
all of its data. In the latter case, vendors could have such systems independently
verified.

This technique is appropriate for very high assurance systems (e.g. beyond



A1) where every available defensive measure is desired. A high assurance version
of this technique should be supported by a trusted development environment
and additional measures to cope with general viruses [2, 5].

The technique is also appropriate for some systems of moderate assurance,
depending on their design. Moderate assurance systems may contain compo-
nents that are very vulnerable to Trojan horse attacks. Consideration should be
given to using a low-resource version of this technique to provide some assurance
that the development system has not introduced a Trojan horse.

A final practical issue is the examination of the high order language source for
the compiler. The technique described in this paper assumes there is no Trojan
horse in the source text of the compiler. This assumption may be difficult
to meet for two reasons. First, the source code for the compiler is usually very
closely held by the compiler vendor. This raises the question of certification and
publicly available source text for temporary filter compilers; both are beyond
the scope of this paper. Second, contrary to the statement in [4], the task of
insuring that the compiler source code is trustworthy is non-trivial. Examination
of compiler source code is probably the first use that should be made of practical
automated high order language analysis techniques. Since the compiler source
code is the most sensitive source code associated with the creation of a trusted
system, it should be the most profitable place to look for high order language
security flaws.

References

[1] F. Cohen. Computer viruses: theory and experiments. In Proc. 7th National
Computer Security Conference, pages 240-263, September 1984.

[2] F. Cohen. A cryptographic checksum for integrity protection. Computers &
Security, 6(6):505-510, Dec. 1987.

[3] S. Draper. Trojan horses and trusty hackers. CACM, 27(11):1085, November
1984.

[4] K. Thompson. Reflections on trusting trust. CACM, 27(8), August 1984.

[5] C. Young. Taxonomy of computer virus defense mechanisms. In Proc. 10th
National Computer Security Conference, pages 220-225, Sep. 1987.



